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Case Fatality Rate
The CFR is the …

• Probability of dying from a disease

• Probability of dying from a disease at a given point in time
– Omicron vs Delta vs …
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Convolving Cases to Deaths

How many people will we expect to die on Thursday?
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Convolving Cases to Deaths

E[YThurs] = 40 ∗ 0.05 + 40 ∗ 0.1 + 30 ∗ 0.2 + 20 ∗ 0.1 = 14
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Case Fatality Rate

Definition (Backward CFR)

BCFR(t) =
∞∑
k=0

P(Die at t | Case at t− k )

BCFR(t) = 0.05 + 0.1 + 0.2 + 0.1 = 0.45
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Case Fatality Rate

Definition (Forward CFR)

FCFR(t) =
∞∑
k=0

P(Die at t+ k | Case at t)

= P(Die in future | Case at t)

Conditions stagnant⇒ BCFR(t) = FCFR(t).
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Lagged CFR
Let Xt denote cases and Yt denote deaths at time t. For some ℓ,

Lagged BCFR(t) =
Yt

Xt−ℓ

and

Lagged FCFR(t) =
Yt+ℓ

Xt

Model assumes all deaths after exactly ℓ days

• This isn’t true!

• Induces bias: ↑ in surge, ↓ in downswing
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Convolutional CFR

• By definition, BCFR(t) =
∑

k P(Die at t | Case at t− k) =
∑

k βk.

• Can we estimate βk ∀k?
• Deconvolution problem: Given case & death counts, learn transfer function.

* =
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Convolutional Model

Yt|X =
∑

k

( Xt−k∑
i=1

1{Die at t |Case at t-k}

)

is the sum of asymptotically independent normals by CLT. Therefore

Proposition (Distribution of Yt|X)

Yt|X
d−→ N (µt, σ

2
t )

where µt =
∑

k

Xt−kβk and σ
2
t =

∑
k

Xt−kβk(1− βk)
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MLE of Convolutional Model
Assuming death counts on successive days are independent:

β̂MLE(t) = argmax
β

L(β|X, y)

≈ argmax
β

n∑
s=1

logP(Ys = ys|X, β)

= argmax
β

n∑
s=1

log[
1√
2πσ2

s

e
− 1

2σ2
s
(ys−µs)

2

]

= argmin
β

n∑
s=1

(ys − µs)
2

σ2
s

= argmin
β

n∑
s=1

(ys −
∑d

k=1 Xs−kβk)
2∑d

k=1 Xs−kβk(1− βk)
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Are we done?

No
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Why is the MLE so bad?

β̂MLE(t) ≈ argmin
β∈Rd

∥W(β)(Y− Xβ)∥22

1. Small n

2. Large d

3. High σ2

What can we do about this? Shape-constrained regression!
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Nonnegativity

Better...

21



Nonnegativity

Better...
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Unimodality

Better...
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Piecewise Quadratic

Better...
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Convex Tail

Looks good!
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CFRs, All Time
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Delay Distributions, All Time
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Aside: Trend Filtering
Can fix knots ahead of time... or learn them adaptively

• Trend Filtering enables us to do this!

• Smoothness hyperparameter λ controls number of knots. Choose whichever
produces two.

Definition (2nd-order Trend Filtering)

β̂TF = argmin
β

∥Y− Xβ∥22 + λ∥D(3)β∥1
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Advantages
• Accurate CFRs from realistic delay distributions

• Nonparametric regression enables flexible modeling

• Convex loss, if we omit or fix weights
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Advantages
• Accurate CFRs from realistic delay distributions

• Nonparametric regression enables flexible modeling

• Convex loss, if we omit or fix weights

β̂ = argmin
β∈Θ

∥W(β)(Y− Xβ)∥22

≈ argmin
β∈Θ

∥Y− Xβ∥22 or

≈ argmin
β∈Θ

∥W(Y− Xβ)∥22 with Wii =
1

Yi
,Wij = 0
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Drawbacks
Need to specify hyperparameters for mode and knots.

Can we get good shapes without hyperparameters?
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Parametric Model

Idea: Let β be a scaled PMF from probability family.
Our task will be to learn its parameters.
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Parametric Model

Idea: Let β be a scaled PMF from probability family.
Our task will be to learn its parameters.

The gamma distribution is a good candidate!
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Parametric Model
Let fθ ∈ Rd be a PMF parameterized by θ.
e.g. Gamma has two nonnegative parameters, shape and rate

Definition (Parametric Model)

Find β̂ = ĉfθ̂ , where

ĉ, θ̂ = argmin
c,θ∈Θ

∥W(c, θ)(Y− cXfθ)∥22
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Drawbacks
1. Distributions may not be expressive enough.

2. Loss is nonconvex!
⇒ Heavy dependence on initialization.

For any distribution whose tail decays exponentially,
the loss L(c, θ) = ∥Y− cXfθ∥22 resembles g(θ) = (1− e−θ)2.

g′′ ≯ 0 on whole domain⇒ g,L not convex.
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Initialization
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Log-Concave Motivation
Class of log-convave functions best of both worlds

• Very expressive

• No mode hyperparameter

Unimodal, exponentially decaying tails
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Log-Concave Weights
β is log-concave iff log(β) is concave.
If we reformulate our problem in terms of u := log(β) ∈ Rd, this will be a linear
inequality constraint.

Definition (Log-Concave Weights)

Find β̂ = eû, where
û = argmin

D(2)u⪯0
u=Nα

∥W(u)(Y− Xeu)∥22

PROBLEM: Exponential renders nonconvex

• Get caught in local minimum

37



Log-Concave Weights
β is log-concave iff log(β) is concave.
If we reformulate our problem in terms of u := log(β) ∈ Rd, this will be a linear
inequality constraint.

Definition (Log-Concave Weights)

Find β̂ = eû, where
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Conclusion
• Deconvolve relation between cases & deaths−→ better interpretations &

predictions of CFR

• Found MLE of deconvolution is approximately WLS

• Explored parametric & nonparametric estimators
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Thank You!
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