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Case Fatality Rate

The CFR is the ...

® Probability of dying from a disease
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Case Fatality Rate

The CFRis the ...
® Probability of dying from a disease

® Probability of dying from a disease at a given point in time
- Omicron vs Delta vs ...
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Convolving Cases to Deaths

Case-to-Death Delay Distribution Positive Cases
0.20- . 40- . .
0.15- 30- °
(o)
f=4
=
a
. -
o c
20.10 L] ° 320 L] L]
= o
©
Q
[<
o
0.05- ° 10
0.00- 0-
0 1 2 3 5 3 ; 3
Qy* ego* ga;zﬂ abfzﬁ . \bm‘\
S & & § <&
W N = N

Days after positive case

How many people will we expect to die on Thursday?
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Convolving Cases to Deaths

Convolving Cases and Deaths
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Convolving Cases to Deaths

Convolving Cases and Deaths
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Convolving Cases to Deaths

Convolving Cases and Deaths
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Convolving Cases to Deaths

Convolving Cases and Deaths
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Case Fatality Rate

Definition (Backward CFR)

8 |

BCFR(t) = » P(Dieatt | Caseatt— k)
k=0

Case-to-Death Delay Distribution
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Probability of Dying

0 i 2
Days after positive case

BCFR(t) = 0.05+ 0.1 + 0.2+ 0.1 = 0.45
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Case Fatality Rate

Definition (Forward CFR)

FCFR(t Z}P’ (Die att + k| Case at t)
k=0

= P(Die in future | Case at t)

Conditions stagnant = BCFR(t) = FCFR(t).
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Lagged CFR

Let X; denote cases and Y; denote deaths at time t. For some /,

Ye
Lagged BCFR(t) =
Xe—r
and v
Lagged FCFR(t) = txié
t
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Lagged CFR

Let X; denote cases and Y; denote deaths at time t. For some /,

Ye
Lagged BCFR(t) =
Xe—e
and v
Lagged FCFR(t) = et
Xt
Model assumes all deaths after exactly ¢ days
® This isn't true! Lagged BCFR, W=15.

® Induces bias: T in surge, | in downswing

CFR
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Convolutional CFR

® By definition, BCFR(t) = ), P(Dieatt | Caseatt — k) = >, S
® Can we estimate 3y Vk?
® Deconvolution problem: Given case & death counts, learn transfer function.

G CasiDeah Delay istbuton
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Convolutional Model

Xe—k
YelX = Z (Z 1{Die at t |Case at t—k})

k i=1

is the sum of asymptotically independent normals by CLT.
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Convolutional Model

Xe—k
Yix = Z (Z 1{Die at t |Case at t—k})
i=1

k

is the sum of asymptotically independent normals by CLT. Therefore

Proposition (Distribution of Y;|X)

d
Yt|X — N(/”'Za 01‘2)
where {1 = ZX‘ «Beand o} = ZXz—kﬁk(l — B)
k
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MLE of Convolutional Model

Assuming death counts on successive days are independent:

BME(t) = argmax L(B|X,y)
B

n
~ argmaleogIP’(Ys =yiX, 53)

s=1

2” > (s H)]

& 1
= argmax Z log| We

B s=1

n . 2
_ argmin Z Os — 1s)”

2
B g

d
— argmlnz (yS Zk g (sl kﬁ;)z)
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Are we done?




Are we done?

Predicted delay distribution, no constraints.
True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=2.02%

Probability of Dying

0 10 20 30 40
Days after Positive Case

No
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Why is the MLE so bad?

M (t) ~ argmin || w(B)(¥ — x5)]3
BER?
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Why is the MLE so bad?

M (t) ~ argmin || w(B)(¥ — x5)]3
BER?

1. Smalln

2. Larged

Berkeley

UNIVERSITY OF CALIFORNIA




Why is the MLE so bad?

B () ~ argmin|[w(B)(v — XB)|I3
BER?
1. Smalln
2. Larged
3. High o2
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Why is the MLE so bad?

B () ~ argmin|[w(B)(v — XB)|I3
BER?
1. Smalln
2. Larged
3. High o2
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Why is the MLE so bad?

M (t) ~ argmin || w(B)(¥ — x5)]3
BER?

1. Smalln
2. Larged
3. High o2

What can we do about this?
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Why is the MLE so bad?

M (t) ~ argmin || w(B)(¥ — x5)]3
BER?

1. Smalln
2. Larged
3. High o2

What can we do about this? Shape-constrained regression!
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Nonnegativity




Nonnegativity

Predicted delay distribution, non-negativity constraint.
True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=1.41%
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Unimodality

Predicted delay distribution, non-negativity & unimodality
True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=1.44%
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Piecewise Quadratic

Predicted delay distribution. Non-negative, Unimodal, Piecewise Quadratic
True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=1.54%
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Convex Tail

Predicted delays. Non-negative, Unimodal, Piecewise Quadratic, Convex Tail.
True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=1.47%
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Looks good!
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CFRs, All Time

Convolutional CFRs have 70% lower MSE
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Delay Distributions, All Time

Predicted delays. Non-negative, Unimodal, Piecewise Quadratic, Convex Tail.
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Aside: Trend Filtering

Can fix knots ahead of time... or learn them adaptively

® Trend Filtering enables us to do this!

® Smoothness hyperparameter \ controls number of knots. Choose whichever
produces two.

Definition (2nd-order Trend Filtering)

B = argmin] Y — X3 -+ X0 8]
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Advantages

® Accurate CFRs from realistic delay distributions

Berkeley

UNIVERSITY OF CALIFORNIA




Advantages

® Accurate CFRs from realistic delay distributions

® Nonparametric regression enables flexible modeling
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Advantages

® Accurate CFRs from realistic delay distributions
® Nonparametric regression enables flexible modeling

® Convex loss, if we omit or fix weights
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Advantages

® Accurate CFRs from realistic delay distributions
® Nonparametric regression enables flexible modeling

® Convex loss, if we omit or fix weights

5 = argmin||w(8)(y — XB)|3
peo

~ argmin||y — X3||3 or
peEO

~ argmin||W(y — XB)|5 withw; = —, w; =0
BEG

1
Y;
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Drawbacks

Need to specify hyperparameters for mode and knots.

Delay distributions
Different knots; mode in range 10-16
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Drawbacks

Need to specify hyperparameters for mode and knots.

Delay distributions
Different knots; mode in range 10-16
'

Jul 2020
0ct 2020
Jan 2021
Apr 2021
Jul 2021

Oct 2021

Can we get good shape§ without hyperparameters?
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Parametric Model

Idea: Let 5 be a scaled PMF from probability family.
Our task will be to learn its parameters.

Frequency of Days between Death and First Positive Lab between Jan-Mar 2022
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Parametric Model

Idea: Let 5 be a scaled PMF from probability family.
Our task will be to learn its parameters.

The gamma distribution is a good candidate!

shaj cale=3
shaj cale=5
shaj cale=2

ape=5, s
ape=2, s
ape=4, s
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Parametric Model

Letfo € R? be a PMF parameterized by 6.
e.g. Gamma has two nonnegative parameters, shape and rate
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Parametric Model

Letfo € R? be a PMF parameterized by 6.
e.g. Gamma has two nonnegative parameters, shape and rate

Definition (Parametric Model)

|
.

Find 3 = ¢f;, where

¢,0 = argmin||W(c, 0)(Y — oXfy) |2
c,0€e0
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Drawbacks

1. Distributions may not be expressive enough.
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Drawbacks

1. Distributions may not be expressive enough.

2. Loss is nonconvex!
= Heavy dependence on initialization.

For any distribution whose tail decays exponentially,
the loss £(c,6) = ||Y — cXfy||3 resembles g(6) = (1 — e~ %)2

g’ # 0 onwhole domain = g, £ not convex.
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Initialization

Gamma model, oracle initialization, mode in 15-day range
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Log-Concave Motivation

Class of log-convave functions best of both worlds
® \ery expressive

® No mode hyperparameter

5
-5 -5 -5 -5 -5 5 5 5 5 5 5

Unimodal, exponentially decaying tails
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Log-Concave Weights

B is log-concave iff log(/3) is concave.
If we reformulate our problem in terms of u := log(3) € IRY, this will be a linear
inequality constraint.

Definition (Log-Concave Weights)

FindB = e, where

0 = argmin|W(u) (Y — Xe")||3
D(z)ujO
u=N«
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Log-Concave Weights

B is log-concave iff log(/3) is concave.
If we reformulate our problem in terms of u := log(3) € IRY, this will be a linear
inequality constraint.

Definition (Log-Concave Weights)

FindB = e, where

0 = argmin|W(u) (Y — Xe")||3

D(z)ujO
u=Nao

PROBLEM: Exponential renders nonconvex

® Get caughtin local minimum
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Conclusion

® Deconvolve relation between cases & deaths — better interpretations &
predictions of CFR

Berkeley

UNIVERSITY OF CALIFORNIA




Conclusion

® Deconvolve relation between cases & deaths — better interpretations &
predictions of CFR

® Found MLE of deconvolution is approximately WLS
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Conclusion

® Deconvolve relation between cases & deaths — better interpretations &
predictions of CFR

® Found MLE of deconvolution is approximately WLS

® Explored parametric & nonparametric estimators
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Thank You!
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