Estimating Case Fatality Rate via Convolutional Modeling

Jeremy Goldwasser

Joint work with Ryan Tibshirani, Addison Hu, Daniel McDonald, & Alyssa Bilinski

April 28, 2023

Outline

- 1. Case Fatality Rate
- 2. Likelihood of Convolutional Model
- 3. Deconvolution Methods

Case Fatality Rate

The CFR is the ...

• Probability of dying from a disease

Case Fatality Rate

The CFR is the ...

- Probability of dying from a disease
- Probability of dying from a disease at a given point in time
 - Omicron vs Delta vs ...

Stakeholders

Stakeholders

Stakeholders

How many people will we expect to die on Thursday?

$$\textit{E}[\textit{Y}_\textit{Thurs}] = 40 * 0.05 + \dots$$

$$\textit{E}[\textit{Y}_{\textit{Thurs}}] = 40*0.05 + 40*0.1 + \dots$$

$$E[Y_{Thurs}] = 40 * 0.05 + 40 * 0.1 + 30 * 0.2 + \dots$$

$$E[Y_{Thurs}] = 40 * 0.05 + 40 * 0.1 + 30 * 0.2 + 20 * 0.1 = 14$$

Case Fatality Rate

Definition (Backward CFR)

$$\mathsf{BCFR}(t) = \sum_{k=0}^\infty \mathbb{P}(\mathsf{Die}\,\mathsf{at}\,t\,|\,\mathsf{Case}\,\mathsf{at}\,t-k\,)$$

$$BCFR(t) = 0.05 + 0.1 + 0.2 + 0.1 = 0.45$$

Case Fatality Rate

<u>Definition</u> (Forward CFR)

$$\begin{aligned} \mathsf{FCFR}(t) &= \sum_{k=0}^{\infty} \mathbb{P}(\mathsf{Die} \ \mathsf{at} \ t + k \ | \ \mathsf{Case} \ \mathsf{at} \ t) \\ &= \mathbb{P}(\mathsf{Die} \ \mathsf{in} \ \mathsf{future} \ | \ \mathsf{Case} \ \mathsf{at} \ t) \end{aligned}$$

Conditions stagnant \Rightarrow *BCFR*(t) = *FCFR*(t).

Lagged CFR

Let X_t denote cases and Y_t denote deaths at time t. For some ℓ ,

$$\mathsf{Lagged}\ \mathsf{BCFR}(t) = \frac{\mathsf{Y}_t}{\mathsf{X}_{t-\ell}}$$

and

$$\mathsf{Lagged}\;\mathsf{FCFR}(t) = \frac{Y_{t+\ell}}{X_t}$$

Lagged CFR

Let X_t denote cases and Y_t denote deaths at time t. For some ℓ ,

$$\mathsf{Lagged}\ \mathsf{BCFR}(t) = \frac{\mathsf{Y}_t}{\mathsf{X}_{t-\ell}}$$

and

$$\mathsf{Lagged}\;\mathsf{FCFR}(t) = \frac{\mathsf{Y}_{t+\ell}}{\mathsf{X}_t}$$

Model assumes all deaths after exactly ℓ days

- This isn't true!
- Induces bias: ↑ in surge, ↓ in downswing

Convolutional CFR

- By definition, $BCFR(t) = \sum_k \mathbb{P}(\text{Die at } t \mid \text{Case at } t k) = \sum_k \beta_k$.
- Can we estimate $\beta_k \forall k$?
- Deconvolution problem: Given case & death counts, learn transfer function.

Convolutional Model

$$Y_t|X = \sum_k \left(\sum_{i=1}^{X_{t-k}} \mathbb{1}\{\text{Die at t } | \text{Case at t-k}\}\right)$$

is the sum of asymptotically independent normals by CLT. Therefore

Proposition (Distribution of $Y_t|X$)

$$Y_t|X \stackrel{d}{ o} \mathcal{N}(\mu_t,\sigma_t^2)$$
 where $\mu_t = \sum_k X_{t-k}eta_k$ and $\sigma_t^2 = \sum_k X_{t-k}eta_k(1-eta_k)$

Convolutional Model

$$Y_t|X = \sum_{k} \left(\sum_{i=1}^{X_{t-k}} \mathbb{1}\{\text{Die at t } | \text{Case at t-k}\}\right)$$

is the sum of asymptotically independent normals by CLT. Therefore

Proposition (Distribution of $Y_t|X$)

$$\begin{aligned} & \textit{Y}_t | \textit{X} \xrightarrow{\textit{d}} \mathcal{N}(\mu_t, \sigma_t^2) \\ \textit{where } \mu_t &= \sum_{\textit{k}} \textit{X}_{t-\textit{k}} \beta_{\textit{k}} \textit{ and } \sigma_t^2 = \sum_{\textit{k}} \textit{X}_{t-\textit{k}} \beta_{\textit{k}} (1-\beta_{\textit{k}}) \end{aligned}$$

MLE of Convolutional Model

Assuming death counts on successive days are independent:

$$\begin{split} \hat{\beta}^{\textit{MLE}}(t) &= \operatorname*{argmax}_{\beta} \mathbb{L}(\beta|\textit{X},\textit{y}) \\ &\approx \operatorname*{argmax}_{\beta} \sum_{s=1}^{n} \log \mathbb{P}(\textit{Y}_{s} = \textit{y}_{s}|\textit{X},\beta) \\ &= \operatorname*{argmax}_{\beta} \sum_{s=1}^{n} \log [\frac{1}{\sqrt{2\pi\sigma_{s}^{2}}} e^{-\frac{1}{2\sigma_{s}^{2}}(\textit{Y}_{s} - \mu_{s})^{2}}] \\ &= \operatorname*{argmin}_{\beta} \sum_{s=1}^{n} \frac{(\textit{y}_{s} - \mu_{s})^{2}}{\sigma_{s}^{2}} \\ &= \operatorname*{argmin}_{\beta} \sum_{s=1}^{n} \frac{(\textit{y}_{s} - \sum_{k=1}^{d} \textit{X}_{s-k}\beta_{k})^{2}}{\sum_{k=1}^{d} \textit{X}_{s-k}\beta_{k}(1 - \beta_{k})} \end{split}$$

Are we done?

Are we done?

Predicted delay distribution, no constraints.

True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=2.02%

No

$$\hat{\beta}^{\mathit{MLE}}(t) \approx \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \lVert \mathit{W}(\beta)(\mathit{Y} - \mathit{X}\beta) \rVert_2^2$$

- 1. Small n
- 2. Large d
- 3. High σ^2

$$\hat{\beta}^{\mathit{MLE}}(t) \approx \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \lVert \mathit{W}(\beta)(\mathit{Y} - \mathit{X}\beta) \rVert_2^2$$

1. Small n

- 2. Large d
- 3. High σ^2

$$\hat{\beta}^{\textit{MLE}}(t) \approx \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \lVert \textit{W}(\beta)(\textit{Y} - \textit{X}\beta) \rVert_2^2$$

- 1. Small n
- 2. Large d
- 3. High σ^2

$$\hat{\beta}^{\mathit{MLE}}(t) \approx \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \lVert \mathit{W}(\beta)(\mathit{Y} - \mathit{X}\beta) \rVert_2^2$$

- 1. Small n
- 2. Large d
- 3. High σ^2

$$\hat{\beta}^{\mathit{MLE}}(t) \approx \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \lVert \mathit{W}(\beta)(\mathit{Y} - \mathit{X}\beta) \rVert_2^2$$

- 1. Small n
- 2. Large d
- 3. High σ^2

$$\hat{\beta}^{\mathit{MLE}}(t) \approx \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \lVert \mathit{W}(\beta)(\mathit{Y} - \mathit{X}\beta) \rVert_2^2$$

- 1. Small n
- 2. Large d
- 3. High σ^2

$$\hat{\beta}^{\textit{MLE}}(t) \approx \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \lVert \textit{W}(\beta)(\textit{Y} - \textit{X}\beta) \rVert_2^2$$

- 1. Small n
- 2. Large d
- 3. High σ^2

Nonnegativity

Nonnegativity

Predicted delay distribution, non-negativity constraint. True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=1.41%

Better...

Unimodality

Predicted delay distribution, non-negativity & unimodality True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=1.44%

Better...

Piecewise Quadratic

Predicted delay distribution. Non-negative, Unimodal, Piecewise Quadratic True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=1.54%

Better...

Convex Tail

Predicted delays. Non-negative, Unimodal, Piecewise Quadratic, Convex Tail. True CFR=1.5%; lagged CFR=1.54%; convolutional CFR=1.47%

Looks good!

CFRs, All Time

Delay Distributions, All Time

Predicted delays. Non-negative, Unimodal, Piecewise Quadratic, Convex Tail.

Aside: Trend Filtering

Can fix knots ahead of time... or learn them adaptively

- Trend Filtering enables us to do this!
- \bullet Smoothness hyperparameter λ controls number of knots. Choose whichever produces two.

Definition (2nd-order Trend Filtering)

$$\hat{\beta}^{\mathrm{TF}} = \underset{\beta}{\operatorname{argmin}} \| \mathbf{Y} - \mathbf{X}\boldsymbol{\beta} \|_{2}^{2} + \lambda \| \mathbf{D}^{(3)}\boldsymbol{\beta} \|_{1}$$

- Accurate CFRs from realistic delay distributions
- Nonparametric regression enables flexible modeling
- Convex loss, if we omit or fix weights

- Accurate CFRs from realistic delay distributions
- Nonparametric regression enables flexible modeling
- Convex loss, if we omit or fix weights

- Accurate CFRs from realistic delay distributions
- Nonparametric regression enables flexible modeling
- Convex loss, if we omit or fix weights

- Accurate CFRs from realistic delay distributions
- Nonparametric regression enables flexible modeling
- Convex loss, if we omit or fix weights

$$\begin{split} \hat{\beta} &= \underset{\beta \in \Theta}{\operatorname{argmin}} \| \textit{W}(\beta)(\textit{Y} - \textit{X}\beta) \|_2^2 \\ &\approx \underset{\beta \in \Theta}{\operatorname{argmin}} \| \textit{Y} - \textit{X}\beta \|_2^2 \quad \text{or} \\ &\approx \underset{\beta \in \Theta}{\operatorname{argmin}} \| \textit{W}(\textit{Y} - \textit{X}\beta) \|_2^2 \quad \text{with } \textit{W}_{ii} = \frac{1}{\textit{Y}_i}, \textit{W}_{ij} = 0 \end{split}$$

Drawbacks

Need to specify hyperparameters for mode and knots.

Drawbacks

Need to specify hyperparameters for mode and knots.

Can we get good shapes without hyperparameters?

Idea: Let β be a scaled PMF from probability family. Our task will be to learn its parameters.

Idea: Let β be a scaled PMF from probability family. Our task will be to learn its parameters.

The gamma distribution is a good candidate!

Let $f_{\theta} \in \mathbb{R}^d$ be a PMF parameterized by θ . e.g. Gamma has two nonnegative parameters, shape and rate

Let $f_{\theta} \in \mathbb{R}^d$ be a PMF parameterized by θ . e.g. Gamma has two nonnegative parameters, shape and rate

Definition (Parametric Model)

Find
$$\hat{\beta}=\hat{\mathit{cf}}_{\hat{\theta}}$$
, where

$$\hat{c}, \hat{\theta} = \underset{c,\theta \in \Theta}{\operatorname{argmin}} \| W(c,\theta) (Y - cXf_{\theta}) \|_{2}^{2}$$

Drawbacks

1. Distributions may not be expressive enough.

Drawbacks

- 1. Distributions may not be expressive enough.
- 2. Loss is nonconvex!
 - \Rightarrow Heavy dependence on initialization.

For any distribution whose tail decays exponentially, the loss $\mathcal{L}(c,\theta) = \|\mathbf{Y} - \mathbf{c}\mathbf{X}\mathbf{f}_{\theta}\|_2^2$ resembles $\mathbf{g}(\theta) = (1 - \mathbf{e}^{-\theta})^2$.

 $g'' \not> 0$ on whole domain $\Rightarrow g, \mathcal{L}$ not convex.

Initialization

Log-Concave Motivation

Class of log-convave functions best of both worlds

- Very expressive
- No mode hyperparameter

Unimodal, exponentially decaying tails

Log-Concave Weights

 β is log-concave iff $\log(\beta)$ is concave.

If we reformulate our problem in terms of $u:=\log(\beta)\in\mathbb{R}^d$, this will be a linear inequality constraint.

Definition (Log-Concave Weights)

Find
$$\hat{\beta} = e^{\hat{u}}$$
, where

$$\hat{u} = \underset{u = N\alpha}{\operatorname{argmin}} \|W(u)(Y - Xe^{u})\|_{2}^{2}$$

Log-Concave Weights

 β is log-concave iff $\log(\beta)$ is concave.

If we reformulate our problem in terms of $u:=\log(\beta)\in\mathbb{R}^d$, this will be a linear inequality constraint.

Definition (Log-Concave Weights)

Find
$$\hat{\beta} = e^{\hat{u}}$$
, where

$$\hat{u} = \underset{u = N\alpha}{\operatorname{argmin}} \|W(u)(Y - Xe^{u})\|_{2}^{2}$$

PROBLEM: Exponential renders nonconvex

• Get caught in local minimum

Conclusion

- \bullet Deconvolve relation between cases & deaths \longrightarrow better interpretations & predictions of CFR
- Found MLE of deconvolution is approximately WLS
- Explored parametric & nonparametric estimators

Conclusion

- \bullet Deconvolve relation between cases & deaths \longrightarrow better interpretations & predictions of CFR
- Found MLE of deconvolution is approximately WLS
- Explored parametric & nonparametric estimators

Conclusion

- \bullet Deconvolve relation between cases & deaths \longrightarrow better interpretations & predictions of CFR
- Found MLE of deconvolution is approximately WLS
- Explored parametric & nonparametric estimators

Thank You!

