Jeremy Goldwasser

website · Eman · Linkedin · Google Scholar				
EDUCATION	UC Berkeley, Berkeley, CA Ph.D. in Statistics; Advised by Ryan Tibshirani and Giles Hook Yale University, New Haven, CT B.S. in Statistics and Data Science	g 2021 - May 2026 (Expected) GPA: 3.97 Aug 2017 - May 2021 GPA: 3.73		
Internship Experience	 Apple Research Intern, Vision Products Group Developed novel generative AI method for counterfactual im Tool is currently used to provide previously unattainable insig 			
	 Genentech Data and Statistical Sciences Intern South San Francisco, CA Produced confidence intervals for AI pathology models using conformal prediction. Calibrated cell-type classifier, quantifying uncertainty and improving test accuracy by 3%. 			
	 Voca.ai (acquired by Snapchat) Machine Learning Intern Trained Transformers for Automatic Speech Recognition and 	June - Aug 2019 Herzliya, Israel d Named Entity Recognition.		
PUBLICATIONS	Stabilizing Estimates of Shapley Values with Control Van Published in XAI (first author) Ascle: A Python Natural Language Processing Toolkit for Published in Journal of American Medical Informatics Associated	2024 or Medical Text Generation		
	Forest Fire Clustering for Single-Cell Sequencing Combines Iterative Label Propagation with Parallelized Monte Carlo Simulations Published in Nature Communications (second author) 2022			
	Neural NLP for Unstructured Data in Electronic Healt Published in Computer Science Review (third author)	h Records: A Review 2022		
SUBMISSIONS	Unifying Image Counterfactuals and Feature Attributions with Latent-Space Adversarial Attacks Submitting to NeurIPS (first author) 2025			
	Statistical Significance of Feature Importance Rankings In Review, UAI (first author)	2025		
	Gaussian Rank Verification In Review, Stat (first author)	2025		
	Challenges in Real-Time Estimation of Changing Epide In Review, PLOS Computational Biology (first author)	2024		
ONGOING PROJECTS	• Statistical ML algorithms to better track mortality risk in epidemics like COVID-19.			

Projects

- Attention-based interpretability of Vision Transformers for AI cancer pathology.
- \bullet Online learning for ensembling time series forecasters with uncertainty quantification.

MISC PROJECTS	AI Meets DNA Methylation Used interpretable ML to identify methylation sites that regulate CD55 gene of the control o	May 2024 expression.	
	 Predicting Peptide-MHC Binding Affinity in SARS-CoV-2 Designed neural architecture to predict which viral peptides bind with immun 	April 2020 e cells.	
SKILLS	Coursework: Deep Learning, Optimization, Causal Inference, AI in Biology Programming: Python, R, LATEX Languages: Spanish (fluent), Hebrew (basic)		
Awards	U.S. Civic Digital Fellowship (Declined) Yale College Dean's Research Fellowship, Morse Richter Fellowship Yale Creative and Performing Arts Grant	2021 2020 2020	

INVITED TALKS

- "Estimating Epidemic Severity Rates." UCSF MINDSCAPE, February 2025.
- "Estimating Epidemic Severity Rates." Delphi Group, January 2025.
- "Estimation of Time-Varying Severity Rates from Aggregate Data: Pitfalls and New Ideas." California Department of Public Health, September 2024.
- "Estimation of Time-Varying Severity Rates from Aggregate Data: Pitfalls and New Ideas." Centers for Disease Control and Prevention (CDC), September 2024.
- "Stabilizing Estimates of Shapley Values with Control Variates." 2nd World Conference on Explainable AI, Malta, July 2024.
- "Provably Stable Feature Rankings with SHAP and LIME." Apple Data Analytics and Quality Group, June 2024.
- "Stable Feature Rankings & Time Series Deconvolution." Genentech gRED Computational Sciences, February 2024.
- "Provably Stable Feature Rankings with SHAP and LIME." Center for Human-Compatible AI, January 2024.
- "Provably Stable Feature Rankings with SHAP and LIME." Berkeley Statistics Student Seminar, January 2024.
- "Estimating Case Fatality Rate via Convolutional Modeling." Delphi Group, April 2023.