Estimating Epidemic
Severity Rates
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Time-varying severity rates in epidemiology

. Severity rates express the probability thata ™ The Alantic
primary event at time t will result in serious
secondary event, e.g.
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How Many Americans Are About to

- Case-fatality rate (CFR) Die?
o Hospitalization-fatality rate (HFR) ooy en ko prprneS
o Time-varying or stati()nary? By Alexis C. Madrigal and Whet Moser
o Most academic work on estimating severity
rates assumes stationarity over time. e 4 i o T P v e o s oo
o Severity rates constantly change due to new e U —

variants, therapeutics, etc.
o Epidemiologists at the CDC use time-varying
rates to analyze new risks.




Often estimate severity from aggregate data

Calculating severity rates Is straightforward with a line list of patient

outcomes.
o CFR: Observe fraction of patients that tested positive at t who ultimately die.

Maintaining such a line list may be unrealistic or impossible
o Inthis case, severity rates must be estimated from aggregate count data.

Hospitalizations and Deaths, US
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Standard ratio estimators

» Most estimators for severity rates are simple ratios (“case fatality ratio”)
between secondary events and at-risk primary events
« The standard time-varying approach is a lagged ratio of aggregate counts:

—— Deaths at ¢
CFR; =
'™ Cases at t — /¢

« A more principled generalization uses the delay distribution:
Deaths at ¢

S {Cases at t — k} x P(Death is at k days)

CFR; =

Our work: Understanding the bias of these ratios and proposing statistically sound
alternatives.




Observed these ratios exhibit huge bias

Notable failures, HFR:

« Signaled enormous,
nonexistent surge after
Omicron peak —
especially lagged ratio.

« Ignored higher risk as
Delta took over

Findings robust across
parameters, geography, etc.

US HFRs, Ratio Estimates vs Approximate Ground Truth
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Ingredients of Analysis: Data Streams

* Let X, denote the primary incidence time series

* Let Y, denote the secondary incidence time series.
« We focus on HFR because there Is decent ground truth data.
* In theory, they have the following relation:
d Ti—k
Yi| X<t = Z Z 1{i*" case at t — k died at t}
k=0 1=1

* In practice, real-world data may be messier due to e.qg. day-of-week
effects or data dumps.



Ingredients of Analysis: Statistical Model

d Ti—k

« Given Yi|Xo<t = Z Z l{ith case at t — k died at t}
k=0 i=1

« Taking expectation reveals convolution of hospitalizations with delay
distribution = and HFRs p:

{Deaths at t} := Z{Hospitalizations at t — k}
k

x P(Die in k days)
— Z{Hospitalizations at t — k}
k

x P(Die in k days | Die)
x P(Die | Hospitalized at t — k)

=) Xt kTkpr—k
k



Recreate bias on simulated data
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« Noiseless simulation, so
Y= E[ Y{X, ] from the
previous slide

« Even when
hospitalizations are flat,
the estimated HFR Is up
to 50% too high!

HFRs, simulated deaths
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Well-specified analysis

Bias of Convolutional Ratio with True Delay
Distribution
A. Arises due to changing severity rates p

\
d Xt Tk B. Affected by changing primary incidence X
(Pt—k — Pt). a. Usually falling — more bias

Bias(py) = »  — —
ZJ’:U t—57; \/ C. Exacerbated by heavy-tailed delay distr.

For a stationary oracle delay distribution r,
B R C

k=0
HFR estimates by true delay distribution

HFR estimates by true HFR HFR estimates by primary incidence
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Misspecified analysis

For oracle delay distribution 7z, misspecified

HFR estimates, misspecified delay distribution
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« Heuristics for lagged ratio:
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State-level results

We estimate HFRs on JHU, which
uses deaths aligned by report date
— not the date the actually
occurred.
Longer reporting delays -
heavier-tailed delay distribution -
more bias (well-specified)
Convolutional ratio consistently
outperforms lagged ratio, which
again IS

a. Too high during rise

b. Too low during fall
c. Too high after leveling out

Ratio estimates and approximate ground truth
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Follow-up work: Improving severity estimation

o Currently, we are developing a new method that avoids these biases.
« Instead of obtaining only the current severity rate, our approach estimates

the curve over all time, then takes the most recent prediction.
o We approximate maximum likelihood estimation on a faithful probabilistic
model, using modern smoothing techniques for stability.

o Preliminary results demonstrate large improvements on retrospective
analysis; we have yet to test its efficacy in the real-time setting.

Hospitalization-fatality rate, US
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Collaborators




Thanks for
your attention!
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