
Preference Learning (Or, How to Build AGI)

Jeremy Goldwasser

March 18, 2025

In essence, training an LLM like ChatGPT boils down to 3 phases: Pre-
training, supervised fine-tuning, and preference learning. This blog post pro-
vides a concise, well-written overview. In this document, we’ll overview these
three phases, going into depth on the two major frameworks for preference
learning: RLHF and DPO.

1 Pre-Training
The first phase of training an LLM is to pre-train it on a ton of data. As you
may be familiar, language models train only to predict the probability of the
next token. A token can be thought of as the essential subwords that constitute
a word. For example, the word “jumping" may be represented with the tokens
“jump" and “-ing."

Why next-token prediction? Doing so provides a neat formulation to learn a
probabilistic model for language. Say a document contains N tokens x1, . . . , xN .
By the definition of conditional probability, the joint probability of the document
may be factored as such:

P(x1, . . . , xN) = Π
N

t=1P(xt|xs<t) (1)
= P(x1)× P(x2|x1)× P(x3|x2, x1)×

Conceived this way, we see the LLM is actually a density model. Through
autoregressive decoding, it can compute the probability of any string of tokens.

How much pre-training data is used? A staggering amount. Perusing through
Wikipedia’s list of LLMs, the largest public models like LLaMa 3 are trained
on around 15 trillion tokens. This size has ballooned in recent years. GPT-3,
arguably the first LLM, was trained on 300 billion tokens, 10 times bigger than
its predecessor. The LLMs that captured the public’s attention in 2022 used
around 1-2 trillion.

For context, the entirety of English Wikipedia — 7 million articles — con-
tains 5 billion words. LLMs are trained on multiple langauges at once, so the
first LLaMa used about 25 billion tokens from Wikipedia. If it sounds like

1

https://huyenchip.com/2023/05/02/rlhf.html
https://en.wikipedia.org/wiki/List_of_large_language_models

we’re running out of data, it’s because we are. Massive public datasets like
CommonCrawl (1.2 trillion tokens) exist, but there aren’t many.

As a result, companies that train LLMs have turned to proprietary data.
This may entail licensing datasets from other companies. Reddit and Stack-
Overflow, for example, have changed their privacy policies to prohibit compa-
nies from freely scraping their text to train LLMs. And, of course, a lot of data
is obtained through sketchier means. A host of lawsuits from writers and news
organizations argue their proprietary work has been used to train LLMs without
their knowledge, consent, or remuneration.

The models themselves are enormous. GPT 3 and 4o are around 200 bil-
lion parameters; GPT-4 is rumored to be an order of magnitude larger. Even
DeepSeek used over 600 billion parameters for their V3 model, famous for its
frugal training cost of only $6 million dollars. The staggering cost to train LLMs
bodes poorly for academic LLM research.

2 Supervised Fine-Tuning
Once an LLM has been pre-trained, the next step is to fine-tune it on supervised
datasets. These take the form (x, y), where x is a prompt and y is a response.
InstructGPT and later LLMs train a single model on a diverse range of tasks.
To name a few: Question answering, document summarization, machine trans-
lation, open-ended generation, rewriting, and so on (Table 1).

Use-case Prompt

Brainstorming List five ideas for how to regain enthusiasm for my career.

Generation Write a short story where a bear goes to the beach, makes friends
with a seal, and then returns home.

Rewrite This is the summary of a Broadway play:
"""
{summary}
"""
This is the outline of the commercial for that play:
"""

Table 1: Prompts for various use-cases.

In the pre-LLM era, models would be trained directly on these datasets.
However, pre-training helps greatly, since it instills a deep sense of linguistic
fluency, background knowledge, and perhaps some degree of reasoning ability.
While large in objective terms, the datasets used for fine-tuning pale in compar-
ison. Pretraining data accounted for 98% of the text used to train InstructGPT.

Rather than retraining all of the weights of the network, it is common prac-
tice to only perform low-rank updates. Let W be a matrix of weights and biases

2

at some layer of the network. After fine-tuning, the learned weights will be some
W ′ = W +∆. The intuition of fine-tuning is that the same general capabilities
should remain, but be adapted for some specific task. Therefore constrain ∆ as
a low-rank matrix product AB, fix W , and learn A and B. This technique is
called Low-Rank Approximation, or LoRA.

In the language of RL – which we’re about to enter – supervised fine-tuning
is referred to as behavioral cloning, wherein a model trains to mimic the behavior
of expert labels. But this is just supervised learning. Indeed, the connection of
RLHF to RL is tenuous at best.

3 Preference Learning
So far, everything we’ve seen is fairly standard. Fine-tuning a model that has
been pre-trained on vast unsupervised data is a well-known machine learning
approach. In contrast, incorporating preference data is the major breakthrough
for LLMs. This initially took the form of Reinforcement Learning from Human
Feedback, or RLHF (Ouyang et al., 2022). More recently, Direct Preference
Optimization (DPO) has emerged as a promising alternative.

In the following subsections, we first introduce preference learning from a
statistical perspective. Then, we demonstrate how RLHF explicitly models
preferences and uses them to optimize the LLM. Finally, we show how DPO
circumvents the need for a reward model, and thus for RL.

3.1 Bradley-Terry Model
Modeling preferences has a genuine history in the statistics literature. The
Bradley-Terry model models pairwise comparisons between items (Bradley and
Terry, 1952). Pairwise data shows up in a variety of contexts. For example,
there are 30 NBA teams and 82 games in a season. The Bradley-Terry model
provides a inferential framework to evaluate the relative strength of each pair
of teams, based on the pairwise outcomes of their games.

In this model, the event that item i is preferred over j is expressed as a
Bernoulli random variable with success probability P(i ≻ j). To obtain this
probability, the model associates a positive real-valued score si with each item,
where

P(i ≻ j) =
si

si + sj
.

Bradley and Terry proposed using exponential scores. That is, we define si =
eβi , and learn all βi. Framed this way,

P(i ≻ j) =
eβi

eβi + eβj
.

Taking a logit transform reveals the interpretation as βi − βj being the log

3

odds for this Bernoulli random variable:

logit (P(i ≻ j)) = σ−1(P(i ≻ j)) = log

(
P(i ≻ j)

P(j ≻ i)

)
= log

(
eβi

eβj

)
= βi − βj .

Equivalently, P(i ≻ j) = σ(βi−βj), for the logistic function σ(x) = 1
1+e−x =

ex

1+ex . (This is reminiscent of logistic regression, in which a binary output Y is
modeled as P(Y = 1) = σ(θ⊤x).)

The scores si and sj may be learned via maximum likelihood estimation.
For example, suppose preference rankings are observed within a set of n items.
Using exponential scores and letting nij denote the number of times i is preferred
over j, the MLE is

p̂MLE = argmin
p1,...pn≥0

−L(p)

= argmin
p∈Rn

+

− log [Πi̸=jP(i ≻ j)nij]

= argmin
p∈Rn

+

∑
i=1

∑
j=1

− log [σ(βi − βj)
nij]

= argmin
p∈Rn

+

∑
i=1

∑
j=1

nij log
[
1 + e−(βi−βj)

]
= argmin

p∈Rn
+

∑
i=1

∑
j=1

nij

(
βi − log

[
eβi + eβj

])

3.2 RLHF
For brief “historical" context, RLHF itself was first proposed in Christiano et al.
(2017), when OpenAI was primarily focused on robotics, not LLMs. (Imag-
ine that.) Subsequent works extended it to the language context, albeit on
specific tasks like summarization (Ziegler et al., 2020; Stiennon et al., 2020). In-
structGPT was the first work that used preference learning for general-purpose
LLMs (Ouyang et al., 2022). ChatGPT was released later that year, using the
approach it publicized.

3.2.1 Reward Model

In the context of LLMs, preference datasets rank different responses to a prompt.
Formally, they contain tuples of the form (x, yw, yℓ). Here, x is a natural lan-
guage prompt. yw and yℓ are two responses, whose subscripts indicates the
annotator’s winning (w) and losing (ℓ) preferences. The first Claude model was
trained on roughly a million such comparisons.

4

The essential idea of RLHF is use this data to learn a reward model rϕ(x, y)
that scores a response y to a prompt x. Having trained this model, an RL algo-
rithm then modifies the LLM to produce responses that maximize the reward.

How is the reward model trained? Via the maximum likelihood of a Bradley-
Terry model. In scoring both responses to a prompt, it aims to assign high
probability that the winning response was preferred. Recall that the Bradley-
Terry model defines the probability that item i is preferred as σ(βi − βj). In
this context, the likelihood of the observed data is

P(Response w preferred to ℓ|x) = σ(rϕ(x, yw)− rϕ(x, yℓ)).

The reward model, then, is trained to minimize the negative log-likelihood of
the whole preference dataset D = {(xi, yiw, y

i
ℓ)}:

Lr(θ|D) = −E(x,yw,yℓ)∼D log [σ(rϕ(x, yw)− rϕ(x, yℓ))] . (2)

3.2.2 RL

Once the reward model has been trained on human preferences, the next step is
to update the fine-tuned LLM to generate responses aligned to it. This is where
reinforcement learning allegedly occurs. RL in the broadest sense is choosing
an action from some state based on a reward signal. (Ben Recht refers to this
broad categorization as “RL Maximalism.") In RLHF, the state is the prompt;
the policy is the LLM; the action is its generated response; and the reward is the
plug-in score r(x, y) learned from the preference data. As before, the updates
to the LLM may occur via LoRA, not retraining all parameters.

Is this really RL? Debatable. Normally, RL is associated with sequential
decision-making – robots playing ping-pong and the like. While we might be
tempted to think that iteratively decoding tokens renders this sequential, there
actually is just one step: The entire response generated. There is no notion
of dynamics for an environment. Some people call one-step RL algorithms
contextual bandits.

The reward model isn’t the only thing that gets optimized. Because the
preference dataset is small in relative terms, optimizing only to the reward
model runs the risk of overfitting. To mitigate this, a regularization term is
added, which ensures the LLM doesn’t stray too far away.

Formally, let πθ be the LLM we optimize, and πref a reference LLM - namely,
the pre-trained LLM before fine-tuning. Each LLM may compute the probabil-
ity of decoding a sequence of tokens y in response to prompt x: By Eq. (1),
π(y|x) is the product of all next-token probabilities in y. To avoid πθ prioritiz-
ing the reward samples at the expense of its prior linguistic capabilities, the KL
divergence between πθ(y|x) and πref(y|x) is subtracted from the reward.

R(θ) = Ex∼D,y∼πθ(y|x)[rϕ(x, y)]− βDKL(πθ(y|x)∥πref(y|x)). (3)

where DKL(P∥Q) =
∑

x P (x) log
(

P (x)
Q(x)

)
.

5

Typically, the objective (3) is optimized by Proximal Policy Optimization
(Schulman et al., 2017). PPO was developed by OpenAI for general-purpose
policy learning, not necessarily for RLHF. Nevertheless, it worked very well,
and since 2017 has been their RL method of choice.

I won’t go too heavy into the details of PPO. Essentially, it improves upon
a prior policy learning algorithm, TRPO. That method addressed the unstable
training and high sample inefficiency that plagues RL. It ensured smooth up-
dates by constraining the KL Divergence on the Hessian matrix of the policy
networks’ parameters.

Computing the Hessian is computationally expensive, and in general TRPO
is complex to implement. PPO circumvents these challenges by using a differ-
ent, Hessian-free objective function. This clips the ratio between each action’s
probability ratios between the new and updated policy. As a result, the next
policy has to be “proximal” to the previous one: It won’t be encouraged to make
a big step in certain directions.

3.3 DPO
Direct Preference Optimization (DPO) bolsters the claim that RLHF isn’t really
RL. It obviates the need for a reward model or reinforcement learning at all.
Rather, it performs supervised learning, drawing a straightforward connection
to RLHF.

Core to DPO is the following lemma.

Lemma 1. Given a reward function r(·, ·), the RLHF objective in equation (3)
is optimized by

πr(x, y) =
1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)
,

with partition function Z(x) =
∑

y πref(y|x) exp
(

1
β r(x, y)

)
.

Proof. We apply the definition of KL divergence, turn the problem into a min-
imization, and apply the definition of Z(x).

max
π

Ex∼D, y∼π

[
r(x, y)

]
− β DKL

(
π(y|x) ∥πref(y|x)

)
= max

π
Ex∼D Ey∼π(·|x)

[
r(x, y)− β log

π(y|x)
πref(y|x)

]
= min

π
Ex∼D Ey∼π(·|x)

[
log

π(y|x)
πref(y|x)

− 1

β
r(x, y)

]

= min
π

Ex∼D Ey∼π(·|x)

log π(y|x)
1

Z(x)πref(y|x) exp
(

1
β r(x, y)

) − logZ(x)

 .

(4)

6

Define the denominator in the first term of (4) as π∗(y|x) = 1
Z(x)πref(y|x) exp

(
1
β r(x, y)

)
.

Note this is a proper probability density, as it is non-negative and sums to 1.
Putting it in, we re-organize the objective as

min
π

Ex∼D

[
Ey∼π(y|x) log

(
π(y|x)
π∗(y|x)

)
− logZ(x)

]
=min

π
Ex∼D

[
DKL

(
π(y|x) ∥π∗(y|x)

)
− logZ(x)

]
(13)

Gibbs inequality tells us the KL divergence is 0 if and only if the two probability
distributions are identical. Z(x) does not depend on π, so the objective is
optimized at π = π∗.

Having established Lemma 1, we can rearrange it to express the reward
model in terms of the optimal policy.

Corollary 1. Taking logs and rearranging Lemma 1 yields

r(x, y) = β log
πr(y|x)
πref(y|x)

+ β logZ(x).

Lemma 1 and Corolary 1 define the optimal policy for any reward function r.
This includes the ground-truth reward function r∗ and its corresponding policy
π∗.

The partition function Z(x) is computationally intractable, as it would re-
quire computing the probability of all generated responses. Fortunately, we will
not need to worry about it in the DPO objective.

We trained the reward model to minimize the equation 2. This maximizes
the likelihood of the observed preferences {(xi, yiw, y

i
ℓ)}. For reward model r(·, ·),

each preference probability under the Bradley-Terry model takes the form

Pr(yw ≻ yℓ|x) = σ(r(x, yw)− r(x, yℓ))

=
1

1 + e−(r(x,yw)−r(x,yℓ))

=
1

1 + er(x,yℓ)−r(x,yw)
.

Using the ground-truth reward r∗, we apply corollary (1) expressing the
reward in terms of its optimal policy. The Z(x) terms cancel out.

P∗(yw ≻ yℓ | x) =
1

1 + exp
(
β log π∗(yℓ|x)

πref (yℓ|x) − β log π∗(yw|x)
πref (yw|x)

)
= σ

(
β log

π∗(yw | x)
πref(yw | x)

− β log
π∗(yℓ | x)
πref(yℓ | x)

)
. (5)

7

This final equation (5) is the likelihood in the DPO objective. DPO aims to
learn the optimal policy π∗ that underlies this probabilistic model. It minimizes
the negative log-likelihood that the winning responses are preferred.

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
.

(6)
Note the reward model is implicit. Having approximated π∗, the rewards

r∗(x, y) in Corollary 1 cannot be obtained due to their reliance on Z(x); however,
differences in rewards can be calculated, since the intractable terms cancel out.
Indeed, the subtitle of the DPO paper is, Your Language Model Is Secretly a
Reward Model.

3.4 RLHF vs DPO
Clearly, DPO is a simpler alternative to RLHF. There is no need to train a
separate reward model, which may be cumbersome. More importantly, it opti-
mizes the LLM based on supervised learning rather than RL. While PPO is a
strong algorithm, reinforcement learning is notoriously challenging to implement
effectively.

For this reason, DPO has swiftly emerged as a leading way to align LLMs
with human preferences. Where efficiency is concerned, it has overtaken RLHF
as the go-to way to train LLMs. Even Meta’s LLaMa 3 was trained with DPO.
The DPO paper’s experiments are all competitive with RLHF.

Does this spell the end of RL? Not necessarily. Major players like OpenAI
and DeepSeek have not switched to DPO, as there are a number of advantages
to having a distinct reward model. One such advantage is flexibility. RLHF’s
modular system naturally facilitates expressing different kinds of preferences.
One could have different sets of preferences for helpfulness, harmlessness, and
factuality. DeepSeek also used rule-based rewards based on form and logical rea-
soning. Then, the final reward would take an average of these specific rewards,
using some set of weights. Furthermore, these reward weights can be easily
adjusted to changing priorities, enabling greater flexibility over model tuning.

References
Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block

designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345.
JSTOR 2334029.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D.
(2017). Deep reinforcement learning from human preferences. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

8

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P.,
Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton,
F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J.,
and Lowe, R. (2022). Training language models to follow instructions with
human feedback.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C., Radford, A.,
Amodei, D., and Christiano, P. F. (2020). Learning to summarize with human
feedback. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 3008–3021. Curran Associates, Inc.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D.,
Christiano, P., and Irving, G. (2020). Fine-tuning language models from
human preferences.

9

	Pre-Training
	Supervised Fine-Tuning
	Preference Learning
	Bradley-Terry Model
	RLHF
	Reward Model
	RL

	DPO
	RLHF vs DPO

