Provably Stable Feature Rankings with SHAP and LIME

Jeremy Goldwasser

Why did the AI make this decision?

Learning from AI

Local Explanations

Why did our model predict y on input x?

Feature Attributions

f(x) = 2.846

Gradient-Based Methods

Attribution mask

Overlay IG on Input image

iii Shap

Shapley Values

How valuable was LeBron James to the 2022-2023 Lakers?

The Shapley Value

Intuition: A player's value depends on their contribution to coalitions of their teammates

$$\phi_j(v) := \sum_{S \in \{1, \dots, d\} \setminus j} w_S * \{\text{marginal contribution of j to } S \}$$

$$:= \frac{1}{d} \sum_{S \subseteq [d] \setminus \{j\}} {\binom{d-1}{|S|}}^{-1} \left[v_x(S \cup \{j\}) - v_x(S) \right]$$

- Basketball, evaluate team given players in S
- SHAP, evaluate prediction given features in S: $v_x(S) = \hat{\mathbb{E}}[f(X)|X_S = x_S]$

Shapley Axioms

SHAP uniquely satisfies 3 desiderata for ML feature explanations:

- **1.** Local Accuracy. Sum of importance scores is prediction
- 2. Missingness. Missing feature \rightarrow score is 0
- **3. Consistency**. Consider 2 models, A and B. If knowing a feature changes the prediction more on model A, then its score on A is at least as big as on B.

Shapley Estimation

 $\phi_j(v) := \sum_{S \in \{1, \dots, d\} \setminus j} w_S * \{\text{marginal contribution of j to } S \}$

 $\mathcal{O}(2^d)$ terms may be computationally prohibitive \rightarrow Use sampling-based approximation

Shapley Estimation

Shapley Value $\phi_j(v) := \frac{1}{d!} \sum_{\pi \in \Pi(d)} v(S_j^{\pi} \cup \{j\}) - v(S_j^{\pi})$

SHAP value function

$$v_x(S) = \hat{\mathbb{E}}[f(X)|X_S = x_S]$$

Shapley Sampling Estimate

$$\hat{\phi}_j(v) = \frac{1}{n} \sum_{i=1}^n v(S_j^i \cup \{j\}) - v(S_j^i).$$

Instability with SHAP

"Stability is a common-sense principle and **a prerequisite for knowledge**. It is related to the notion of scientific reproducibility, which Fisher and Popper argued is **a necessary condition for establishing scientific results**.

Bin Yu and Karl Kumbier, *Veridical Data Science*, (PNAS, 2020)

Desideratum

Estimate an input's Shapley values such that the <u>ranking</u> of the top K attributions are correct with probability exceeding $1 - \alpha$

$$\iff \{ \phi_{(\hat{1})} \ge \phi_{(\hat{2})} \ge \dots \ge \phi_{(\hat{K})} \ge \max_{j > K} \phi_{(\hat{j})} \}$$
$$\iff \left\{ \bigcup_{i=1}^{K} \phi_{(\hat{i})} \ge \max_{j > i} \phi_{(\hat{j})} \right\} \qquad \text{w.p.} \ge 1 - \alpha.$$

where $(\hat{1}), (\hat{2}), ...$ denotes the index of the 1st, 2nd, ... estimated Shapley value.

e.g. Want to confirm 2 most important features \Leftrightarrow Confirm 1st beats 2nd, & 2nd beats 3rd.

Largest Shapley Value

To establish $(\hat{1})$ as the feature with the largest Shapley value, need to show it's bigger than $(\hat{2}), (\hat{3}), \dots, (\hat{d})$.

• Multiple testing correction \rightarrow lose power

Rank Verification for Exponential Families

Setting: Observe set of RVs from exponential family; want to rank population params

- To establish winner, only need to do twotailed test with runner-up!
- Shapley Sampling asymptotically normal

Testing 1st vs 2nd place

Want resampled Shapley estimates to have same order

$$\hat{\phi}_{(\hat{1})}^* \ge \hat{\phi}_{(\hat{2})}^* \iff \hat{\Delta}_1^* := \hat{\phi}_{(\hat{1})}^* - \hat{\phi}_{(\hat{2})}^* \ge 0$$

Shapley estimates converge to Gaussian

$$\hat{\Delta}_{1} \coloneqq \hat{\phi}_{1} - \hat{\phi}_{2} \stackrel{d}{\Rightarrow} \mathcal{N}\left(\phi_{1} - \phi_{2}, \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}\right)$$
$$\hat{\Delta}_{1}^{*} - \hat{\Delta}_{1} \stackrel{d}{\Rightarrow} \mathcal{N}\left(0, 2\left[\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}\right]\right)$$
$$\hat{\Delta}_{1}^{*} |\hat{\Delta}_{1} \stackrel{d}{\Rightarrow} \mathcal{N}\left(\phi_{1} - \phi_{2}, 2\left[\frac{\hat{\sigma}_{1}^{2}}{n_{1}} + \frac{\hat{\sigma}_{2}^{2}}{n_{2}}\right]\right)$$

Testing 1st vs 2nd place

Obtain *P(resampled order different)* by integrating over normal tails

Reject if test statistic exceeds critical value. Two-tailed level- α test equivalent to one-tailed level-

Reject if test statistic exceeds critical value. Two-tailed level- α test equivalent to one-tailed level- $\frac{\alpha}{2}$

$$Z_{p_n} := \frac{\hat{\Delta}_1}{\sqrt{2\left[\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}\right]}} \ge Z_{1-\alpha/2}$$

K Largest Shapley Values

We have a way to establish largest Shapley value. What about 2^{nd} , 3^{rd} , ..., K^{th} ?

Rank Verification for Exponential Families

- Repeating procedure until failure to reject controls FWER
- So if 1st beats 2nd, 2nd beats 3rd, ..., Kth beats (K+1)th, then

P(not all rankings correct) $\leq \alpha$.

RankSHAP Algorithm

For each feature:

Get initial Shapley Sampling estimate While ≥ one of the K pairwise comparison tests fails to reject: Estimate # samples needed for test to reject Run Shapley Sampling on those features for that many samples

RankSHAP Algorithm

For each feature:

Get initial Shapely Sampling estimate While ≥ one of the K pairwise comparison tests fails to reject: Estimate # samples needed for test to reject Run Shapley Sampling on those features for that many samples

<u>Theorem:</u> $P(at \ least \ 1 \ top-K \ ranking \ error) \leq \alpha$

What if a test fails to reject?

We use the test statistic

$$Z_{p_n} := \frac{\hat{\Delta}_1}{\sqrt{2\left[\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}\right]}}$$

Solve for
$$n_1, n_2$$
 s.t. $Z_{p_n} \ge Z_{1-\alpha/2}$

e.g. forcing
$$n_1 = n_2$$
: = n' yields $n' \ge 2\left(\frac{Z_{1-\alpha/2}}{\hat{\Delta}_k}\right)^2 (\hat{\sigma}_{(\hat{k})}^2 + \hat{\sigma}_{(k+1)}^2).$

2. 9.

			SHAP				
	Ν	D	K=3, Avg FWER	K=7, Avg FWER	$\substack{K=3,\\ \operatorname{Prop} < \alpha}$	$K=7,$ Prop $<\alpha$	
Adult	32,561	12	2%	14%	1	0.8	
Bank	45,211	16	6%	3%	1	1	
BRCA	572	20	1%	7%	1	0.9	
WBC	569	30	3%	10%	1	0.8	
Credit	1,000	20	1%	6%	1	1	

LIME

benign worst area	Feature	Value	benign worst area	Feature	Valu
worst perimeter	worst area	1226.00	worst perimeter	worst area	
0.03 worst radius	worst perimeter	143.70	0.03 worst radius	worst perimeter	143.7
0.03	worst radius	19.85	0.03 mean area	worst radius	19.8
0.01	mean area	773.50	0.01	mean area	773.5
worst concave points	worst concave points	0.25	0.01	mean radius	15.6

(a) Iteration 1 of S-LIME

(b) Iteration 2 of S-LIME

LIME & S-LIME

- To explain an input, LIME fits an interpretable model on samples randomly generated around it
 - K-LASSO selects K features in order
- At each step, S-LIME generates enough samples s.t. highest-"scoring" selection beats runnerup w.p. $\geq 1 - \alpha$

worst area	reature	Value	worst area	Feature	Value
worst perimeter	worst area	1226.00	worst perimeter	worst area	1226.0
0.03 worst radius	worst perimeter	143.70	0.03 worst radius	worst perimeter	143.7
0.03 mean area 0.01	worst radius	19.85	0.03 mean area	worst radius	
	mean area	773.50	0.01 mean radius	mean area	773.50
0.01		0.25	0.01	mean radius	15.66

(a) Iteration 1 of S-LIME

(b) Iteration 2 of S-LIME

LIME & S-LIME

- To explain an input, LIME fits an interpretable model on samples randomly generated around it
 - K-LASSO selects K features in order
- At each step, S-LIME generates enough samples s.t. highest-"scoring" selection beats runnerup w.p. $\geq 1 - \alpha$
 - This does not control FWER!

Multiple Hypothesis Testing: The Problem

Number of (independent) hypotheses tested

Under the null, probability of rejecting at least on hypothesis increases rapidly with number of independent hypothesis tests

UMD Economics 626: Applied Microeconomics Lecture 9: Multiple Test Corrections, Slide 6

Bonferroni Correction

FWER = P(at least 1 false rejection)

Bonferroni lowers significance threshold by a factor of # tests

Bonferroni Correction

FWER = P(at least 1 false rejection)

Bonferroni lowers significance threshold by a factor of # tests

Running S-LIME w/ $\frac{\alpha}{2K}$ controls FWER = P(at least 1 incorrect ranking) $\leq \alpha$

Factor of 2 ensures selected feature beats all, not just runner-up

			LIME				
	Ν	D	K=3, Avg FWER	K=7, Avg FWER	K=3, Prop $< \alpha$	$\begin{array}{c} K{=}7,\\ \text{Prop} < \alpha \end{array}$	
Adult	32,561	12	0%	NA	1	NA	
Bank	45,211	16	0%	8%	1	0.9	
BRCA	572	20	0%	12%	1	0.8	
WBC	569	30	0%	NA	1	NA	
Credit	1,000	20	0%	0%	1	1	

Stabilizing Estimates of Shapley Values with Control Variates

Control Variates

Control Variates

- Given an estimator \hat{A} that is unbiased for unknown target A^*
- Choose a correlated estimator \hat{B} , unbiased for known estimand B^*
- Define the control variates estimator $\tilde{A} \coloneqq \hat{A} - c(\hat{B} - B^*)$
 - For any c, \tilde{A} is unbiased
- For $c^* = Cov(\hat{A}, \hat{B})/Var(\hat{B})$, $Var(\tilde{A})$ is reduced by a factor of $(1 - \rho_{\{\hat{A},\hat{B}\}}^2)$ over $Var(\hat{A})$.
 - Here, variance = MSE

Shapley Estimation

Shapley Value $\phi_j(v) := \frac{1}{d!} \sum_{\pi \in \Pi(d)} v(S_j^{\pi} \cup \{j\}) - v(S_j^{\pi})$

Shapley Sampling Estimate

$$\hat{\phi}_j(v) = \frac{1}{n} \sum_{i=1}^n v(S_j^i \cup \{j\}) - v(S_j^i).$$

KernelSHAP Estimate

$$\hat{\phi}(x) = \operatorname{argmin}_{\phi \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left(\phi^T z^i - \left(v_x(z^i) - v_x(\mathbf{0}) \right) \right)^2$$

Constructing a Control Variate

SHAP value function

$$v_x(S) = \hat{\mathbb{E}}[f(X)|X_S = x_S]$$

- We need an estimator that 1) is positively correlated with the Shapley estimate, and 2) has known estimand
- Each of the n samples indexes a random subset of features. The control variate will use these same subsets but for a different predictor: the **Taylor Expansion** of *f* around *x*
- What order expansion it is depends on how $X_{-S}|X_S$ is sampled in the value function

A Control Variate for the Shapley Value (1/2)

Theorem 1. Define $\mu := \mathbb{E}[X]$ and $\Sigma_{jk} := Cov(X_j, X_k)$. Let the value function $v_x(S)$ compute conditional means by sampling each feature from its marginal distribution. The j^{th} Shapley value of the second-order Taylor approximation of f around x is

$$\phi_j^{approx}(x) = \frac{\partial f}{\partial x_j} (x_j - \mu_j) - \frac{1}{2} \left[\sum_{k=1}^d (x_k - \mu_k) \frac{\partial^2 f}{\partial x_j x_k} \right] (x_j - \mu_j) - \frac{1}{2} \sum_{k=1}^d \Sigma_{jk} \frac{\partial^2 f}{\partial x_j x_k}.$$

A Control Variate for the Shapley Value (2/2)

Theorem 2. Define the value function to take the conditional expectation of $f(X)|X_S$ over a multivariate normal distribution. Let $S^m \subseteq [d] \setminus \{j\}$ be the subset of features appearing before j in the m^{th} permutation of [d], and let Q_S and R_S be matrices defined in Section 1.2 of the supplementary material that do not depend on x. Define

$$D_j := \frac{1}{d!} \sum_{m=1}^{d!} ([Q_{S_j^m \cup j} + R_{S_j^m \cup j}] - [Q_{S_j^m} + R_{S_j^m}]).$$

The j^{th} Shapley value of the first-order Taylor approximation of f around x is

$$\phi_j^{approx}(x) = \nabla f(x)^T D_j(x-\mu).$$

ControlSHAP Variance Reductions, Neural Net

Importance Rankings More Stable

Conclusion

- ML explanations must be trustworthy to be useful
- Identify most important features with statistical guarantees for SHAP & LIME

Next Steps

 $\widehat{}$

- Keep computational work with sequential testing
- Local → Global Shapley feature importances

Thanks for your attention!