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Why did the Al make this decision?




Learning from Al
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Local
Explanations

Input

Black Box

Why did our model predict y on input x?
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Gradient-Based Methods

Attribution mask Overlay IG on Input image
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A Two-Minute
Introduction to
Shapley Values




How valuable was
LeBron James to
the 2022-2023

Lakers?
















The Shapley Value

Intuition: A player’s value depends on their
contribution to coalitions of their teammates

¢;(v) := Z wg * {marginal contribution of j to S}

::é > (Y ‘1)1[%(5%})—%(3)}

Cla\{Jj}
. Basketball, evaluate team given players in S

- SHAP, evaluate prediction given features in S: v, (S) = E[f(X)|Xs = x5]




Shapley Axioms

SHAP uniquely satisfies 3 desiderata for
ML feature explanations:

1. Local Accuracy. Sum of importance
scores Is prediction

2. Missingness. Missing feature -
score is 0

3. Consistency. Consider 2 models, A
and B. If knowing a feature changes
the prediction more on model A,
then its score on A is at least as big
as on B.



Shapley Estimation
¢;(v) = Z wg * {marginal contribution of j to S}

O(Zd) terms may be computationally prohibitive
-> Use sampling-based approximation



Shapley Estimation

Shapley Value

b (v) == D (ST U{i}) - v(S))

" well(d)

SHAP value function

v2(S) = E[f(X)|Xs = 23]

Shapley Sampling Estimate
f 1 i : i
6j(v) = — D w(SEU {4} — v(Sh).
i=1




Instability with SHAP

Frequency of Top-K SHAP Rankings
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“Stability is a common-sense principle
and a prerequisite for knowledge. It is
related to the notion of scientific
reproducibility, which Fisher and Popper
argued Is a necessary condition for
establishing scientific results.

Bin Yu and Karl Kumbier, Veridical Data
Science, (PNAS, 2020)

IS THERE A

REPRODUCIBILITY
CRISIS?

A Nature survey lifts the lid on
how researchers view the ‘crisis’
rocking science and what they
think will help.

BY MONYA BAK




Desideratum

Estimate an input’s Shapley values such that the ranking of the top K
attributions are correct with probability exceeding 1 — «

= {04 2@ 2 Z Pi) Z WAX ()}

= {Uqﬁ()>max¢ } w.p. >1—a.

J>1

Where (i), (2), ... denotes the index of the 1%t, 2"d, ... estimated Shapley value.

e.g. Want to confirm 2 most important features <> Confirm 1%t beats 2"9, & 2"9 beats 3'¢.
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Largest Shapley Value

To establish (1) as the feature with the
largest Shapley value, need to show 1t’s

bigger than (2),(3), ..., (d).
« Multiple testing correction - lose power
Rank Verification for Exponential Families

Setting: Observe set of RVs from exponential
family; want to rank population params

* To establish winner, only need to do two-
tailed test with runner-up!

 Shapley Sampling asymptotically normal


https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-2/Rank-verification-for-exponential-families/10.1214/17-AOS1634.full
https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-2/Rank-verification-for-exponential-families/10.1214/17-AOS1634.full
https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-2/Rank-verification-for-exponential-families/10.1214/17-AOS1634.full

Testing 1%t vs 2"d place

Want resampled Shapley estimates to have same order
Py Z gy = D=0y ~ 95 2

Shapley estimates converge to Gaussian

A1==<Z/51—<7322>-/V(¢1 <252, 2 :E)
Ar — A, éN(0,2[i | Zi])

A2 a_%

a1t S (oo 22+ )




Testing 1%t vs 2"d place

Obtain P(resampled order different) by integrating over normal tails

Reject if test statistic exceeds critical value. Two-tailed level-a test
equivalent to one-tailed level-

Reject if test statistic exceeds critical value. Two-tailed level-a test
equivalent to one-tailed Ievel-§

Z Z]_—(Jf/2‘_
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K Largest Shapley Values

We have a way to establish largest Shapley
value. What about 2nd 3rd . Kt?

Rank Verification for Exponential Families

 Repeating procedure until failure to reject
controls FWER

 So if 1%t beats 2nd, 2"d heats 31, ..., K
beats (K+1)™, then

P(not all rankings correct) < a.


https://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-2/Rank-verification-for-exponential-families/10.1214/17-AOS1634.full

RankSHAP Algorithm

For each feature:
Get initial Shapley Sampling estimate

While > one of the K pairwise comparison tests fails to reject:
Estimate # samples needed for test to reject
Run Shapley Sampling on those features for that many samples



RankSHAP Algorithm

For each feature:
Get initial Shapely Sampling estimate

While > one of the K pairwise comparison tests fails to reject:
Estimate # samples needed for test to reject
Run Shapley Sampling on those features for that many samples

Theorem: P(at least 1 top-K ranking error) < «




What If a test fails to reject?

We use the test statistic
A
e

71 (%)

Solveforn,,n, st. Z, =27y 4/,

Lp, =

n

Z1—-a/2\2,. .
e.g. forcing n, = n,: = n' yields n' > 2( lAk/Z) (0(2,;) + 0(219%1))'






FWERSs of Top-K SHAP Rankings

Bl Shapley Sampling (500)
EEm Shapley Sampling (RS avg)
Bl RankSHAP

I
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SHAP

N D Avglr_ﬁ%’ﬁlz Av‘;{ﬁ?’m Prfgp_ 2 Pfgp_ Zn
Adult 32,561 12 2% 14% 1 0.8
Bank 45,211 16 6% 3% 1 1
BRCA 572 20 1% 7% 1 0.9
WBC 569 30 3% 10% 1 0.8
Credit 1,000 20 1% 6% 1 1




Average RankSHAP Samples per Feature, K=5
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LIME & S-LIME

 To explain an input, LIME fits an
Interpretable model on samples
randomly generated around it

o K-LASSO selects K features In
order

* At each step, S-LIME generates
enough samples s.t. highest-
“scoring” selection beats runner-
upw.p.21-«


https://arxiv.org/abs/1602.04938
https://arxiv.org/pdf/2106.07875.pdf
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LIME & S-LIME

 To explain an input, LIME fits an
Interpretable model on samples
randomly generated around it

o K-LASSO selects K features In
order

* At each step, S-LIME generates
enough samples s.t. highest-
“scoring” selection beats runner-
upw.p.21-«

* This does not control FWER!


https://arxiv.org/abs/1602.04938
https://arxiv.org/pdf/2106.07875.pdf

Multiple Hypothesis Testing: The Problem
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Number of (independent) hypotheses tested

Under the null, probability of rejecting at least on hypothesis
increases rapidly with number of independent hypothesis tests

UMD Economics 626: Applied Microeconomics Lecture 9: Multiple Test Corrections, Slide 6




Bonferroni Correction

FWER = P(at least 1 false rejection)
Bonferroni lowers significance threshold by a factor of # tests



Bonferroni Correction

FWER = P(at least 1 false rejection)
Bonferroni lowers significance threshold by a factor of # tests

84

Running S-LIME w/ 5T controls FWER = P(at least 1 incorrect ranking) < (x

Factor of 2 ensures selected feature beats all, not just runner-up



Selection Frequency

Frequency of Top-K LIME Rankings
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LIME

N D K=3 K=7 K=3, K=7

Avg FWER Avg FWER Prop <a  Prop <:::x
Adult 32,561 12 0% NA 1 NA
Bank 45,211 16 0% 8% 1 0.9
BRCA 572 20 0% 12% 1 0.8
WBC 569 30 0% NA 1 NA
Credit 1,000 20 0% 0% 1 1




Stabilizing
Values
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Control Variates




» Given an estimator A that is unbiased
for unknown target A™

 Choose a correlated estimator B,
unbiased for known estimand B*

 Define the control variates estimator

Control A =4 c(B—B")
Variates « For any c, 4 is unbiased

e Forc® = Cov(/i,l?)/Var(l?),
Var(A) is reduced by a factor of
(1 — p{zgﬁ}) over Var(/i).

* Here, variance = MSE




Shapley Estimation

Shapley Value

b (v) =5 Y v(STU{}) — u(S])
mell(d)
Shapley Sampling Estimate
f IS 0 : 0
b (v) = — > v(S;U{j}) = v(S)).
i=1
KernelSHAP Estimate
f : 1 i i
Ox) = argmingena— > (872 = (12(2) = v,(0)))

1=1

2



Constructing a Control Variate

SHAP value function
v (S) = E[f(X)|Xs = x5]

* We need an estimator that 1) is positively correlated with the Shapley
estimate, and 2) has known estimand

 Each of the n samples indexes a random subset of features. The
control variate will use these same subsets — but for a different
predictor: the Taylor Expansion of f around x

» What order expansion it is depends on how X ¢|Xs Is sampled in the
value function




A Control Variate for the Shapley Value (1/2)

Theorem 1. Define p := E|X| and Yi := Cov(X;, Xk). Let the value function
v:(S) compute conditional means by sampling each feature from its marginal

distribution. The j* Shapley value of the second-order Taylor approzimation of
f around x is

qbgpprom(m) _ af

j a?j(&/“j 1)
1] & 5?2
~3 ;(fﬂk —uk)a%xk (zj — 1)
d
1 0% f
i 3.
2 ; jkamjazk



A Control Variate for the Shapley Value (2/2)

Theorem 2. Define the value function to take the conditional expectation of
f(X)|Xs over a multivariate normal distribution. Let S™ C [d]\{j} be the subset

of features appearing before j in the m*™* permutation of |d], and let Qs and Rg

be matrices defined in Section 1.2 of the supplementary material that do not
depend on x. Define

d!
1
Dj = - > ([@syuj + Rspus] — Qs + Rsyr)).

m=1
The 3t Shapley value of the first-order Taylor approzimation of f around x is

¢ () = Vi)' D;(x — w).



Independent, KernelSHAP

¥ Dependent, 55

Independent, 55
¥ Dependent, KernelSHAP
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ControlSHAP Variance Reductions, Neural Net
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Importance Rankings More Stable

Simulated Portuguese Bank BRCA Census Income German Credit

40 60 80 20 40 60 80 10 20 30
BN No CV Adjustment 50 CV Adjustment



Conclusion

* ML explanations must be
trustworthy to be useful

* |dentify most important
features with statistical
guarantees for SHAP & LIME

Next Steps

« Keep computational work
with sequential testing

 Local - Global Shapley
feature Importances



Thanks for your attention!
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